(Original Signature of Member)
2
нк

To require an evaluation of the nuclear supply chain of the United States

to further reduce regulatory barriers and associated costs for nuclear supply chain manufacturers, and for other purposes.

IN THE HOUSE OF REPRESENTATIVES

Mr. I	ONALDS	introduced	the	following	bill;	which	was	referred	to	the
	Com	mittee on								

A BILL

To require an evaluation of the nuclear supply chain of the United States to further reduce regulatory barriers and associated costs for nuclear supply chain manufacturers, and for other purposes.

- 1 Be it enacted by the Senate and House of Representa-
- tives of the United States of America in Congress assembled,
- SECTION 1. SHORT TITLE.
- This Act may be cited as the "Atomic Supply Chain 4
- Solutions Act".
- SEC. 2. FINDINGS. 6
- 7 Congress finds the following:

1	(1) The United States remains an esteemed
2	global leader in the area of nuclear safety.
3	(2) The strength of the nuclear supply chain of
4	the United States is directly tied to the growth of
5	the nuclear energy sector.
6	SEC. 3. NUCLEAR SUPPLY CHAIN EVALUATION.
7	(a) In General.—Not later than 270 days after the
8	date of enactment of this Act, the Secretary of Energy
9	shall develop and submit to the appropriate congressional
10	committees an evaluation of the nuclear supply chain of
11	the United States.
12	(b) Contents.—
13	(1) Building up at the right time.—The
14	evaluation developed and submitted under subsection
15	(a) shall include a general description of—
16	(A) past efforts within the nuclear supply
17	chain of the United States to meet increased
18	demand;
19	(B) the importance of proactively bol-
20	stering the nuclear supply chain of the United
21	States in order to meet future demand for nu-
22	clear energy; and
23	(C) lessons learned from the construction
24	of Vogtle 3 and 4 in Georgia, including an anal-
25	ysis of how the nuclear supply chain of the

1	United States operated during such construc-
2	tion and any improvements that could be made
3	to assist with future nuclear construction
4	projects, including workforce and supply chain
5	considerations.
6	(2) Component regulatory challenges.—
7	The evaluation developed and submitted under sub-
8	section (a) shall include—
9	(A) an analysis of whether the requirement
10	for an N-stamp is appropriate and necessary,
11	as determined through the use of probabilistic
12	methodology or other similar methods, for cer-
13	tain nuclear components and materials (selected
14	by the Secretary of Energy) that currently re-
15	quire an N-stamp;
16	(B) a general analysis of the costs associ-
17	ated with regulatory requirements relating to—
18	(i) safety-related nuclear components
19	and materials that receive appropriate
20	ASME certification;
21	(ii) safety-related nuclear components
22	and materials that do not receive appro-
23	priate ASME certification but instead re-
24	ceive acceptance by the Nuclear Regulatory

1	Commission through commercial grade
2	dedication; and
3	(iii) nonsafety-related nuclear compo-
4	nents and materials that do not have to
5	obtain a relevant quality assurance require-
6	ment;
7	(C) identification of potential ways to
8	streamline the acquisition and maintenance of
9	N-stamps and other similar certifications for
10	entities that already have obtained such N-
11	stamps or other similar certifications; and
12	(D) an analysis of N-stamps being effec-
13	tive for a total of a period of 3 years, whether
14	such period could be increased, and what im-
15	pact such an increase would have on safety and
16	the cost associated with obtaining an N-stamp.
17	(3) ADVANCED MANUFACTURING AND INNOVA-
18	TIVE TECHNOLOGIES.—
19	(A) In General.—The evaluation devel-
20	oped and submitted under subsection (a) may
21	include an analysis of potential uses and bene-
22	fits that advanced manufacturing and innova-
23	tive technologies, such as 3D printing, advanced
24	modeling and simulation, augmented reality
25	training, artificial intelligence, robotics, and

1	drones, can provide to the nuclear supply chain
2	of the United States, if the Secretary deter-
3	mines such analysis to be pertinent.
4	(B) Inclusions.—The analysis under sub-
5	paragraph (A) may include a general descrip-
6	tion of—
7	(i) the current status of innovative
8	technologies described in such subpara-
9	graph with respect to the use of such tech-
10	nologies within the nuclear supply chain of
11	the United States;
12	(ii) potential uses for such tech-
13	nologies within the nuclear supply chain of
14	the United States, including use for—
15	(I) reducing cybersecurity
16	vulnerabilities;
17	(II) maximizing the efficiency
18	and effectiveness of transporting nu-
19	clear components and materials;
20	(III) examining the technology
21	readiness of individual components,
22	including structural and thermal anal-
23	ysis;
24	(IV) predicting maintenance
25	schedules and subsequent costs;

1	(V) training nuclear supply chain
2	workforce participants;
3	(VI) identifying counterfeit nu-
4	clear components and materials; and
5	(VII) any other use that may be
6	relevant;
7	(iii) economic considerations associ-
8	ated with such technologies; and
9	(iv) potential challenges associated
10	with such technologies, including potential
11	regulatory challenges with respect to the
12	use of such technologies within the nuclear
13	supply chain of the United States.
14	(4) Allied Cooperation.—The evaluation de-
15	veloped and submitted under subsection (a) shall in-
16	clude a general description of—
17	(A) the relationship between the United
18	States and Canada with respect to nuclear com-
19	ponents and materials, including recommenda-
20	tions on bolstering nuclear-related collaboration
21	with Canada to extend North American civil
22	nuclear energy leadership around the world;
23	and
24	(B) whether certain nuclear components
25	and materials that are manufactured in the

1	United States, as selected by the Secretary of
2	Energy, are cost competitive with similar nu-
3	clear components and materials that are manu-
4	factured internationally.
5	(5) ADVANCED NUCLEAR DEMAND.—The eval-
6	uation developed and submitted under subsection (a)
7	shall include a description of how advanced nuclear
8	technology, including the anticipated increased de-
9	mand for advanced nuclear technology, will impact
10	the existing nuclear supply chain of the United
11	States, and recommendations for increasing the re-
12	siliency of the nuclear supply chain of the United
13	States to prepare for such increased demand.
14	SEC. 4. STATEMENT OF POLICY ON HALEU.
15	It is the policy of the United States to prioritize es-
16	tablishing a robust, diversified domestic high-assay, low
17	enriched uranium (HALEU) market that will ultimately
18	strengthen the energy independence and national security
19	of the United States while reducing procurement and na-
20	tional security risks associated with HALEU, especially
21	with the anticipated increased demand for advanced nu-
22	clear technology.
23	SEC. 5. DEFINITIONS.
24	In this Act:

1	(1) Appropriate congressional commit-
2	TEES.—The term "appropriate congressional com-
3	mittees" means—
4	(A) the Committee on Energy and Com-
5	merce of the House of Representatives; and
6	(B) the Committee on Environment and
7	Public Works and the Committee on Energy
8	and Natural Resources of the Senate.
9	(2) ARTIFICIAL INTELLIGENCE.—The term "ar-
10	tificial intelligence" has the meaning given such
11	term in section 5002 of the National Artificial Intel-
12	ligence Initiative Act of 2020 (15 U.S.C. 9401).
13	(3) ASME.—The term "ASME" means the
14	American Society for Mechanical Engineers.
15	(4) N-stamp.—The term "N-stamp" means
16	the ASME Nuclear Certification.
17	(5) Nuclear components and materials.—
18	The term "nuclear components and materials" in-
19	cludes—
20	(A) reactor pressure vessels;
21	(B) thermocouples;
22	(C) heat exchangers;
23	(D) pumps;
24	(E) sensors;
25	(F) piping;

1	(G) castings;
2	(H) structural steel;
3	(I) concrete;
4	(J) cabling;
5	(K) nuclear grade graphite;
6	(L) helium;
7	(M) sodium;
8	(N) molten salts;
9	(O) beryllium; and
10	(P) any other component or material deter-
11	mined appropriate by the Secretary of Energy.